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I. INTRODUCTION

Cable shields and cable conduits have been widely used as part of the

integrated electromagnetic pulse (EMP) hardening design for aircraft, missiles,

and ground-based systems (Ref. 1). When cable shields are used over a long

distance, they are generally periodically grounded to their immediate outer

shield through bonding straps, clamps, screws, etc. The periodic grounding

provides mechanical rigidity of the shields, reduces the electrostatic hazards,

and at the same time might increase the shielding effectiveness against pene-

tration of long-wavelength disturbances. However, for the broad-band EMP, the

question arises whether the periodic grounding will improve or degrade the

overall shielding effectiveness. In this report, this question will be

answered from a rigorous theoretical analysis. The analytical results

will help the system engineers to determine the optimum grounding arrangement.

Cable shields generally are not perfect. EMP can penetrate either

locally (such as through an aperture, a connector, or one end of the shield,

see Fig. 1) or distributedly (such as through diffusion or uniformly

distributed apertures, see Fig. 2). These two distinct cases will be

separately discussed: discrete excitations in Section II and distributed

excitations in Section III. Finally, the results obtained in Sections II

and III will be summarized in Section IV, and several practical engineering

examples as to how the results can be used will be presented.
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II. DISCRETE EXCITATIONS

In this section, the outer shield of a double-shield configuration

on Figure 1 is assumed to be perfect, except at some isolated locations

where the EMP can penetrate. The current and charge density distributions

on the transmission line formed by the two shields due to the penetration

from a localized location can be calculated by solving the problem depicted

in Figure 3. The distributions due to the voltage and current sources of

the localized penetration can be separately considered. The two problems

of Figure 3a can be decomposed further ( Fig. 4 ) so that only the problem

shown in Figure 3b (which is redrawn as Fig. 5 with Vs- VV 2 or V
s and

is  s s o
1 Ii,I2 or I) need be solved. The coupling to the wires inside the

inner shield can then be calculated by multiplying the appropriate transfer

impedance or charge transfer frequency of the inner shield by the current

or charge density distributions. The time variation of exp(jwt) will be

assumed and suppressed throughout this report.

At sufficiently low frequencies the TEM mode is dominant and the

voltage (V) and current (I) distributions along the line shown in Figure 5

can be calculated by solving the following pair of equations:

dV
1zI-Z'I - 0 (1)

dI++ Y d I 6 (z -nd) V 0, for z > z (2)
dz nm-

r and 1 are, respectively, the series impedance and shunt admittance

per unit length of the line and Yd is the admittance of each strap.

" From Floquet's theorem, the solution of the periodic Equations 1 and 2

has the following form:

V(z) - V exp[-J(k +2n/d)z] (3)
n

* I(z) - I n exp[-j(k+2nn/d)z] (4)

12
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Substituting Equations 3 and 4 into Equations 1 and 2 one has

I n  j Vn(k + 2nw/d)/Z i  (5)

Sdl V (6)n Y'Z' + (k + 2nn/d) - d

where

v°  V n (7)
n=-=

By combining Equations 6 and 7, one finds that the dispersion relation

between k and iYZ! is (also see Ref. 2)

!ZYd
d

cos kd = cos(dVr-Cz ) + i sin(dr-Y'Z') (8)
2di Y!Zi

In Figure 6, cos kd is plotted versus dVCTZ- (= wd/c) for various
1 1

qs (. ZiYdd). (Generally, Z Yi and Yd are complex values. To have
real and positive dv'!Z! and ZY d, one can assume Zi  Zcl' Y! = Yl

1 1l 1y cl
and Yd = (JL where Z' and Y'l are purely imaginary and are

respectively the values of Zi and Yi of a perfect double shield, Ld is

the inductance of each bonding strap). In the figure, one clearly sees

the passband and stopband structures. The stopbands are generally broader

for a larger qs, especially at the lower wd/c region. This is reasonable

because a larger qs means a better grounding. At the higher wd/c region,

the stopbands become narrower because the high-frequency disturbance does

not see the presence of the bonding straps. Also, to have the proper

propagation and decaying constants for z > z, one should restrict the

k-value to have a positive real part and a negative imaginary part. The

imaginary part of k determines how fast the disturbance decays when it

propagates away from the penetration point. A plot of Ilm(kd)I versus

frequency for various q$ is given in Figure 7. Figure 7

obviously shows that a larger qS gives a larger Ilm(kd)I (which means

16
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that the disturbance decays faster) and thus, is more desirable. Actually,

at the low-frequency limit where .-Y!Z! d =wd/c << 1, one can easily show

that

IIm(kd)j cosh-1 (1 + q S/2) (9)

=cosh- [1 + Lid/(2L d)] (10)

where L' is the series inductance per unit length of the double shield.
1

Using Equations 5 and 6 in Equations 3 and 4, one has

CO(YIZI + k -(k +2nr/d)z

V~z) 0  r-oo Yizi +(k +2nr/d) 2

-V (Y I 1 +k 2)d 2-jkd(m +12

Y Z'd e 1/2

cos(kd/2)cos [ ( Cm+ l/2)d- z--Y!

cos (d 9C_'Z!/ 2)

jsin(d -Y ,Z/2))

for md < z < (m +l)d

i(YzZ +k1 k +2n~r/d e-j(k +2nrd) z
0~) 1 )2 Z'

Yn- + (k +2nr/d)

~~;j1~ -i 1 1.~~~k+~d e-jkd(m +12
2(dYdZi) Z~d

~sin (kd/2) cos[ (m+1/2)d-z) -YCZI]

19



cos(kd/2)sin [((m+1l/2)d - z)/'-Y!Z{ (2
+ j 111(12)

cos(dvTY!Z{/2)

for md < z < (m+l)d

1 d V(z)
dz

To obtain Equations 11 and 12, one has used the dispersion relation 8 and

several series summation formulas in Reference 3. With the expression for

l(z), one can calculate the total charge per unit length of the double shield

from

Q'(z) d (z) (13)Jw dz

As is obvious from Equations 11 and 12, V is yet to be determined
0

from the boundary condition at z = zo. In what follows, the cases with the

voltage and current sources will be considered separately.

1. VOLTAGE SOURCE

Applying the condition that V = s at z = zo, one immediately obtains

from Equation 11 that

-ZIY d V 
s

V d e j kd /2 X
(k2 +Ylzi'd

cos(kd/2)cos[(z° - d/2)]'-Y!Z!]

cos(d/CY7Z!/2)(~ 1
-l

sin(kd/2)sin[(z -d/2)/-Y!Zl-0 1 1 (14)

sin(dv7-Y.Z./2)

20



The voltage, current and charge distributions of the double shield can be

fully expressed by Equations 8, 11, 12, 13 and 14 provided Vs is known.

For the problem of Figure 3b, Vs is simply Vs . However, to obtain V5
0

(Note, one uses Vs  v for z > z and Vs  V for z < zo) for the problem

of Figure 4a, one needs to go through some complicated algebraic manipula-

tions involving Equations 12 and 14 and the relationships given in Figure 4a.

For the special cases of zo 0 and d/2 which are the cases to be considered

in the following discussions, Vs , V1 = V2 = Vs/2. Vs can, generally, be

obtained from the short-circuit current I at the outermost surface of the
sc

double shield and the transfer impedance Z of the outer shield via

0 sc TlV 5  IsZl (15)

Since 1(z) and Q'(z) are now known, one can begin to discuss the

coupling to the wires inside the inner shield. The coupling can be

completely described by V'(z) and I'(z) which are, respectively, the5 5

voltage and current source terms of the transmission-line equations of

the inside cables. If the inner shield has a shield transfer impedance

per unit length Z' and a charge transfer frequency QT2' then, V' and '

can be calculated from (see Ref. 4):

V'(Z) = ZT2I(z) (16)

I'(z) - QT2Q'(z) (17)

With the above expressions one can then define an effective transfer

impedance per unit length ZV and an effective charge transfer frequency

per unit length n' for the double shield as follows:

Z (z) - V'(z)/Isc (18)

q (z) M W I;(z)/Isc (19)

21



Here, the subscript "V" is used to indicate that the quantities are for a

localized voltage source which is generated by I
sc

The two quantities Z' and i' are z-dependent. When the frequenciesTh to uatiie TV TV

are in the stopbands, they become extremely small for z >> z° (see the

exponentially decaying term in Equation 12). On the other hand, when the

frequencies are inside the passbands, they are oscillatory functions of z

and are modulated by the periodicity of the bondings. It thus appears

that in order to better quantify the coupling to the wires inside the

inner shield, one should apply some average schemes to ZTV and 2T over

the period d. A natural scheme is to define

( + e dz (20)

md \'T(z)I

where nit < kd < (n+l)r when nr < vC-YZ' d < (n+l)r, n = 0,1,2, .... These

two average quantities are calculated to be

Z ~ ~ QTZ.y ).I

-(ZiYdd) (kd)exp(jkd/2)

(Y' IAd)(k 2 +Y'Z')d 2

1 1 11

cos(kd/2)cos[(z -d/) 11-Y

Icos(d/ C!Y!/2)

sin(kd/2)sin[(zo d/2)V _Z'iyi -0 111

- o1(21)

sin(dVr-Z!Y /2)

where n p I for Figure 3b and n - 2 for Figure 3a.
P P
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Z' and i' still depend on where z =z is. However, no matter what
TV TV 0

z0 is, one can easily observe that the normalized IZTI and (normalized

with respect to their values when there is no bonding, which are, respectively,
ZTl T2/(np V )and Z Q2 Y'/n ) are greater than unity for some regions of
Tz;2 Tl T2l1

/-ZIY I' d (0 wd/c) and smaller than unity for the others. That is, the

bondings improve the shielding effectiveness of the double shield at certain

frequencies but degrade it at the others. Plots of the normalized 1-f,
and.+TV for zo =0 and d/2 as functions of /-ZYix d and qs ( = Zl )are

given in Figures 8 through 11. In the figures, the curves are not given

for the stopbands. In the stopbands, the normalized quantities are

exponentially decayed away from the penetration point. Since the ranges

of the stopbands increase with qs' one should try to have qs as large as

possible for better shielding effectiveness. This can be achieved by

making Z{Yd (= Li/Ld) large. Note that making d large, although

increasing qs' widens wd/c and hence narrows the stopbands. From the

figures, one also sees that arranging the bondings with d = cnn/w (where

resonances occur) seriously degrades the shielding effectiveness, and thus

should be avoided for the important parts of the &MP spectrum.

2. CURRENT SOURCE

Applying the boundary condition that I = Is at z =z o, one obtains

from Equation 12:
j Is

j

is(dYdg)Zd jk d /2

V e__

1 1 (k1 1

sin(kd/2)cos[(z - d/2)-[YZj]

-,sin(dr/Z!z/2)

cos(kd/2)sin[(z -d/2) r-Y]-- 11 (22)

cos(d/2)
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The voltage, current, and charge distributions of the double shield due to

the current source shown in Figure 5 can then be completely described by

Equations 8, 11, 12, 13, and 22, provided that Is is known. Here, similar

to the voltage-source case, for the problem of Figure 3b, Is is IS.

To obtain Is (Is -IS for z > z o, I s for z < z ) for the problem of1 0 2 o
Figure 3a or 4b, one has to solve Equations 11, 12 and the equations given

in Figure 4b. For the special cases of z -0 and d/2, I s Is s =9/2.
0 1  2 o

From these current and charge distributions, one can calculate the voltage-

and current-source terms of the transmission-line equations of the inside

cables using Equations 16 and 17.

The current source of the shield I can generally be estimated from

the short-circuit charge density Q' on the outermost surface of the double
shield and the localized charge transfer frequency T (which has a dimension

of frequency x length, different from that of 1T2) of the outer shield via

(for example, see Equation 38 of Reference 5)

Is  , L(23)

o sc Tl

One can also define an effective transfer impedance ZTI and an effective

charge transfer frequency for the double shield as follows:

ZTI(z) - V'(z)/(juQsc) (24)

STI(z) I 1'(z)/Q' (25)

where the subscript "I" is used to indicate that the quantities are for
a localized "current" source which is generated by Qsc.

sc
Similar to Z' and Q Iof the voltage-source case, Z and Q are

TV TV TI
also z-dependent. They become very small far away from z0 in the stopbands,

are oscillatory and modulated by the periodicity of the straps in the

passbands. The averaged quantities ZTI and ?TI are given by

28



/Z -L 1' d Q L _ ______I
STTi T2

- -I T T2 1 /ZTI /\ npjc / kd "TI ( np/- d )

-(ZiYdd)(kd)exp(jkd/2)
= x

r-zi i d (k
2 +YjZi)d 2

xsin(kd/2)cos[(z° - d/2-Z) iY!]

sin(d /2)

cos(kd/2)sin[(z - d/2) / ] -
- 1J (26)

cos (d V Z / 2)

ZTI and -dTl also depend on where z = z is. However, no matter where

z is, one still sees that the normalized IZTII and ITII (normalized with

respect to their values when there is no bonding, which are, respectively,
QL Z' /(jwnp) and SIL aT /-2 /(n w)) are greater than unity for some
Tl T2 p Tl T2 1 1 p
Z!Y d (where the bondings degrade the shielding effectiveness) and

smaller than unity for the others. Examples of the normalized IZTII and

b-TII for zo=d/2 as functions of 1 1.' d and qs are plotted in Figures 12

and 13. Similar to Figures 8 through 11, the values at the stopbands are

not given. For better shielding effectiveness, one should try to increase

Z'Y and avoid wd/c nt (n=1,2,3,...
1d
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III. DISTRIBUTED EXCITATIONS

In this section both the outer and inner shields are assumed to have

uniformly distributed transfer functions: ZT' (shield transfer impedance

per unit length), QTl (charge transfer frequency) for the outer shield

and Z'T2 , 0T2 for the inner shield (Figs. 2 and 14). The outer shield is

different from that discussed in Section II which has localized transfer

parameters. The total current I and total charge per unit length Qt of
t t

the double-shield cable are assumed known. It and Q' are also assumed to
t t

be dependent upon z as exp(-jhz) and related to each other via

= -=-. It -jhI (27)

In what follows, results for this distributed double shield without bonding

straps are presented first, and then, the more general case with periodic

bonding straps is discussed.

1. SCHELKUNOFF'S CIRCUIT (REF. 6)

When the shields are solid tubular conductors, QTl = ST2 = 0, and the
current-source term I' of the transmission-line equations of the inside

5
cables vanishes. As for the voltage-source term Vs, when hd = 0 and

2
P iai >> h , it can be calculated from the circuit depicted in Figure 15

which is valid regardless whether the bondings are present or not

(Ref. 6). The circuit elements in the figure are defined and given as

follows:

Z1= surface impedance per unit length of the i-th shield
ai

with internal return (i1 for the outer shield,

i -2 for the inner shield)

- 2waioiDi loYiai)l(Yii) + Ko(Yiai)l(Yibi
)b
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a!

Z' surface impedance per unit length of the i-th shieldbi
with external return

2ii Io(Yibi)Kl(Yiai ) + Ko (ybi)Ii( (28)

, 1

ZTi 21raiaibiD

Z' = series impedance per unit length of the doubleci
shield when assumed perfect

= jWP on(a1 /b2)/(2r)

where

Di = 1(Yibi)Kl(yiai) - II(yiai)K1 (Yibi )

2 2 (9
Y 2 = Ji = 2j162 (29)

Pit ai' ai, bi 6i = permeability, conductivity, inner

radius, outer radius, skin depth

of the i-th shield

and 1o, Ii, Ko, K1 are the modified Bessel functions. From the circuit,

one immediately finds that the effective transfer impedance per unit length

Z C- Ve/l t) of the double shield is given by

z' ZI z ZI
z ' +zT2+ -- 12 (30)' al b2 cl z1

where

Z ' + Z (31)Zl al Zb2 + cl

Evidently, Equation 30 and the circuit in Figure 15 can be extended easily

to describe the effective transfer impedance per unit length of a N-surface

solid tubular shield with N > 2.
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Although Equation 30 looks simple, the circuit elements in the expression

are complicated functions of frequency and shield parameters (see Eqs. 28 and

29). When A. (- b i-ai, the thickness of the i-th shield) - ai,bi and yiai,

Yib >> 1, the circuit elements b Z', Zi can be approximated by

z' =z' ' = coth(Yi i)(

ai Zbi = Zii 2ra i (32)

I csch(YiAi) (33)
ZTi 2' a.a--.a A.

where Z' is referred to as the internal impedance per unit length of the

i-th shield. Equations 32 and 33 can be further approximated by

Zv =z' Z' Z' R' 1 (34)
ai bi I Ti dc,i 2A

when yiAi << 1 (i.e., 6. >> A , and

Z' =Z~i 2 Zi YiAiR i (35)
ai c,i

-Yi.Ai

z' 2y.AiR' e (36)
Ti iidci

when yii >> 1 (i.e., A >> 6.). Here, R' is the dc-shield resistance
1. dc,i

per unit length of the i-th shield and the real part of yi is taken to be

positive.

2. CASEY'S CIRCUIT (REF. 7)

When 6 >> A (which guarantees Z'i Z; Z!, Z, see Eq. 34),
4 2 2 2 a

h b - Z'Y'b - Z' Y <b 1 (Y'l is the shunt admittance per unit
1 1 1 clYb clbl cllength of the double shield when assumed perfect and no bonding straps), and

there is no bonding strap, the circuit diagram shown in Figure 16 can be used

to calculate the current I flowing on the inner shield (Ref. 7). In the
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circuit Y' (i =1,2) are the capacitive transfer admittances per unit length

of the shields, which are related to QTi via,

Q = - sY!/Yi (37)
Ti ' i

where

1 (38)

Y1 cI Tl YT2

1 1 1 (39)

and Y' is the shunt admittance per unit length of transmission line formedc2

by the inner shield and the wires within when YT 2

From the circuit, one has

, + h 2 /Y,

t  (Z, + h2/Y + (Zh2 /Y 2) + (Z', + h2/Yt)

i + h2/y (40)

where

+z' (41)
Z1 ZT+ ZT2 cl

from which one immediately has

ii
Q" ! T =; 1 + h2/Yl

T (42)
ZT2 PT2 Z' + h2/Y(2

When h T0 and Y T2 Equation 42, indeed, reduces to Equation 30

with 6 >> A It is believed that the above thin shield (i >> A
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approximation, Equation 42, can also be used for thick shields provided that

Z' defined in Equation 41 is replaced by Equation 31, i.e.,

Z+' + Z'

Sal b2 cl

and a more general circuit can be constructed (Fig. 17). Here, the

circuit elements Z' and Z' should be defined in a broader sense than
al b2

Equation 28 to include all kinds of penetrations. This circuit can also

be easily extended to describe a N-surface shield with N > 2.

Up to this point the discussion in Part 2 has been restricted to the

situation that there is no bonding connecting the shields. When there are

periodic bondings with period d << h
-

, (-YIZ') -  is postulated tha- 'Z) itis pstultedthat

the circuits and equations can still be used provided that Y is replaced

by Y + Yd/di.e., Equation 42 becomes

ZT Q T ZTi + h2TI
Z 2  OT2 Z[ + h2 /(Y' + Yd/d)

In the following, a general analysis of a double shield with periodic bondings

will be given. The results of the analysis will show whether the simple

Equation 43 is accurate enough under the imposed conditions.

3. GENERAL FORMULATION

To obtain the current I flowing on the inner shield one has to solve

the following transmission-line equations (Fig. 14):

dV
dz + ZiI z I (44)

Tl + + 0 6d(z- nd) V w - Y1 -i- Qt4)
d-z [Y! + nYd YT
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The shields are assumed to be infinitely extended in both +z and -z

directions so that only the particular solution of the equations need be

considered. This particular solution can be written as follows (from

Floquet's theorem)

l(z) - e-jhz e IPeJ 2 n1z/d (46)
nn=-w

V(z) = e-jhz vPe tj 2 n rz/d  (47)n

After substituting Equations 46 and 47 into Equations 44 and 45, and going

through some complicated algebraic manipulations and series summations,

one eventually has, for md < z < (m+1)d,

Y' ' ' hYd -ZlY

I(z) = 1 TT+TTl d zTyl 1 1 x
1 t  2 , ) 2Yf t y

Tn h +Z+ TY TZ

2 sin[(h+(-l)n 1Z1 )d/28exp[-j )(h-(-l)nFY!ZI) (od - z
x 1 (48)

n 1 cos(dy'-Y!Z!) - cos(hd) + Y Z'sin(d/-YZ!)/(2i )

from which Q'(z), Z' and Q can be calculated via

Q'(z) I(z) (49)w dz

Z;j T  ZT21(z)/I t  (50)

J(z) (51)
Q aT h dz It

Both Z' and QT are z-dependent. In order to better quantify theT T
transfer functions, one takes the average values of Z' and RT over the

period d of the bonding straps. These average values, designated as Z

and Q T' are independent of z and are given as

41

i=



z-' T p e - j  h z
TT dT 0

T2 T2 t

Y'1 h 2+ Z t' 2 ZY'-Z Y1
1 Til + h iyli 1i

Y 2 2 2
Ti h +Z h +Z'Y' Z' Y' + hiYi ii TITi

Yd cos(d V1iTN) - cos(hd) (

1 cos(d, iz7) cos(hd) + Ydzisin(d'F-Yp)/(2V ) )

It can be shown that Equation 52 reduces to Equation 43 when

-hd - --YIZ!d = < 1, hd >> q (= Z'lYdd) (53)

itan hd >> Iai, (i.e., fhd - nrI >> jai, n=0,1,2, ... ) (54)

The conditions 53 and 54, obviously, are different and less restrictive

than those imposed on Equation 43 during the discussion in Part 2. In

most practical situations, Conditions 53 and 54 can be satisfied, and

Equation 43 can be used. In the case that the constraints 53 and 54 are

not met, one has to resort to Equation 52 which is a complicated function

of the frequency and the s'ield parameters. The shield parameters Z

YTV Y1" Z{, etc., are generally complex values. However, when the

diffusion penetration is not important (which is true for most highly

conducting shields at frequencies larger than 10 kHz), the shield parameters

-{, '~, etc., become purely imaginary (i.e., the penetration is through

the apertures such as in the case of braided cable shields), and Equation 52

becomes a real function. This real function is plotted in Figures 18 through

25 as a function of hd = (-YCIZc' d - wd/c (from 0 to 10) by using qz ZI /Z'

ci ci? Ti ci'
qy M c Ti and qS M Zc1Ydd (- 0.1, 0.5, 1,2) as parameters (also assume
ZT2/Z = 0, Y' /Y{ 2  0). The values for the parameters (qy,qz) - (0.004,

0.01) and (0.001, 0.002) are for some typical braided cable shields (see
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Pages 581 and 584 of Ref. 4). In the figures, the curves of the approximate

Equation 43 are also given. The agreement between Equations 43 and 52 in

the region where wd/c is not close to n-r (n=1,2, ... ) is clearly shown

even when hd is sml.ler or in the order of qs" The reason they agree when

hd < qs is simply because both Equations 43 and 52 have values in the order

of qy or qz (<<  i). Because of this, probably one can lift the condition

hd >> qs in Equation 53. From the figures one can draw the same conclusions

as those of the discrete excitation case that the bondings improve the

shielding effectiveness at certain frequency ranges while degrade it at

others. In order to widen the frequency ranges for better shielding

effectiveness, one may try to increase Z'Yd . Also one should not use a
I d

d -value which causes resonances (where wd/c = nr, n =1,2. .. . ) and thus

seriously degrades the shielding effectiveness.

Equation 52 can also be rewritten in the following form:

I T+ h ' ;1 (55)

zT2 "T2 Z +h + qYd/d)

where

q 2= (56)
1 + dYdZ{(q2 - q) [1(h2 +YjZj)d 2 (

ql= (ZTIYT1 - ZlY!)/(ZTIYTI + h ) (57)

sin(dYTZ) / (dv'7Zl)
iq2 - (58)

= [cos(d/'i ) - cos(hd)]/[(h 2 + Y'Z')d2 /2]

Equation 55 can be easily represented by a circuit (Fig. 26). Under the

assumption that the diffusion penetration is not important, the q-values

are plotted in Figures 27 and 28 as functions of hd = J-Y'IZcl d wd/c,
cl c

with qZ, qY and qs as parameters. The values of the parameters in Figures 27
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and 28 are the same as those of Figures 18 through 25. From the figures,

one can easily see that q =1 when Conditions 53 and 54 are satisfied;

that is, Equation 55 reduces to Equation 43. This is another proof that

the simplified Equation 43 can be used for Equation 52 or 55 when the

Conditions 53 and 54 are satisfied.
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IV. SUMMARY

In this section, the results of Sections II and III are summarized

and some examples are worked out to show how the results can be used.

1. DISCRETE EXCITATIONS

When the outer shield of a double-shield configuration is coupled

to a localized voltage and/or current source (Figs. 1 and 3), one may

employ the Floquet theorem to the periodic transmission-line equations

to determine the disturbances propagating down the bonded double shield.

A passband-stopband structure in the dispersion relation between W and k

is observed (Eq. 8 and Fig. 6). In the stopbands the disturbances

decay exponentially away from the penetration point, whereas in the

passbands the disturbances oscillate persistently. In the stopband the

decaying constant can be easily determined from the dispersion relation.

Curves of the decaying constant are plotted in Figure 7. At low frequencies

the decaying constants can be calculated from the simple approximate

Equations 9 and 10.

5a. Voltage source (V , see Figs. 3b and 4a)

The voltage source can be calculated from

V0  scZTI (59)

where I sc is the short-circuit current on the outermost surface of the

double shield, and Z is the localized transfer impedance of the outer
T1

shield. This voltage source gives rise to V' and I' which are the
s s

voltage- and current-sources exciting the wires inside the inner shield.

By defining a combined effective transfer impedance per unit length Z'I, TV
and a combined effective charge transfer frequency per unit length TV as

ZTV - V'/Isc

TV /Isc
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one can fully describe the coupling through the bonded double shield due to

a voltage source V (or Isc, see Eq. 59). Z' and Q' are averaged over
0 scTV TV

the period d via Equation 20. The averaged quantities ZV and Q are
TV TV

given in Equation 21 and plotted in Figures 8 through 11 after normalized

to their values for no bonding strap (ZTlZT2 (ZI/YI) /2/np and ZT f2T2YI/np,

respectively, where n. 1 for Figure 3b and np 2 for Figure 4, Z2 andT2

are the coupling coefficients of the inner shield).

b. Current source (I, see Figs. 3b and 4b)

The current source can be calculated from

I s Q, L (0
= Q0ca4l (60)

where Q' is the short-circuit charge density on the outermost surface of

double shield and Q is the localized charge transfer frequency of the

outer shield. This current source gives rise to different V' and I'5 s

(different from those due to Vs). By defining a combined effective transfer
0

impedance ZTI and a combined effective charge Lransfer frequency 0TI via

TII,(JQ ZI= v'lI(juQ' )

TI s sc

one can describe the coupling through the bonded double shield due to a

current source Io (or Q' see Eq. 60). Z and Q are also averaged via0 sc TI TI
Equation 20. The averaged quantities ZTI and PTI are given in Equation 26

and plotted in Figures 12 and 13 after normalized to their values for no

bonding strap (QL (n ju), Q L 0/(cn ) respectively).
T IZ2/ p TlT2 p

Figures 8 through 13 (or, more generally, Eqs. 21 and 26) show that

the absolute values of the normalized transfer quantities are less than one

(where the bonding straps improve the shielding effectiveness) at some

frequency ranges and greater than one at the others. The figures also show

that the transfer quantities become infinite at wd/c = ni (n-1,2,3, . .

The transfer quantities, however, are not given in the stopbands (also see

Figs. 6 and 7) where they are extremely small far away from the penetration

point.
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From the above observations, one concludes that in order to have a

better shielding effectiveness, the periodic bonding should be employed

such that the important part of the EMP spectrum lies inside the first

stopband. This can generally be realized by choosing an appropriate d

when Yd and Z are specified. Also, in order to have a broader first

stopband and a greater decaying constant, one should try to make ZjYd larger.

c. Examples

For a coaxial double shield with outer radius (b) = 5 cm and

inner radius (a) = 3 cm, one has

zl~ = j1n
Zj =wLj 20 n() l0-j (Q/m) (61)

i.e.,

L = O-7H/m

Also, suppose that highly conducting wires of radius t =1 mm are to be

used for bonding, then,

(JLd-1 - 2r 1(
d d j ( ( b - a ) £n(2(b-a)/t) (62)

6.7 x 107w(j) -  ()-i

-8, Ld =l.5x1O H

Thus,

Zj ' =6.8 (m-)

The question now arises as to the spacing d to be used. Take d = 0.6 m

and 0.3m as given in Table 1. Both cases give rather wide first stopbands

4which cover the important EMP spectrum. However, the case of d =0.3 m

gives a wider first stopband and a larger decaying constant (note that a

decaying constant of l(m- ) corresponds to an atteunation of 8.7 dB/m).
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Another important quantity is ZjYd, which should be made as large as

possible for better shielding effectiveness. If the double shield is

coaxial, one can use a smaller (b-a) to obtain a larger Z{Yd (Eqs. 51 and 62).

The case of b-4 cm and d-0.6 m is also given in Table 1. From the

table, it is observed that the first stopband is wider and the decaying

constant is larger for b-4 cm, d=0.6 m than the case for b-5 cm, d -O.6m.

TABLE 1. EXAMPLES OF BONDED COAXIAL-CABLE SHIELDS

b=5cm a=3cm t=lmm b=4cm a=3cm t=lmm

(L' =O.l ih/m , L d -5nh) (L!=57nh/m, Ld 
= 6 nh )

Period of Bondings d=O0.3m Id=O.6m d=0.6m

ZjYd (- Li/Ld) 6.7m 1  9.6m

1st Stopband 0 -205 MHz 0 +137 MHz 0 +160 MHz

jIm(k)I, Below 10 MHz 4.4m- 1  2.9m- 1  3.4m-1

2. DISTRIBUTED EXCITATIONS

Given the distributed transfer parameters of both the inner and

outer shields (Figs. 2 and 14), the effective overall transfer parameters

of the double shield can be represented by simple circuit diagrams. These

circuit diagrams are summarized below.

a. Schelkunoff's circuit (Ref. 6)

When the shields are solid tubular conductors whose skin depths,

linear cross-sectional dimensions and the period of the bonding straps

are much smaller than the wavelength of the EMP disturbance, the effective

transfer impedance of the double shield ZT (the effective charge transfer

frequency Q T is, of course, zero) is independent of the bonding straps

and can be calculated from the circuit depicted in Figure 15 or from

Equation 30. The circuit elements in Figure 15 and Equation 30 are

given in Equations 28 and 29, and also Equations 32 through 36 for some

special cases. The circuit can be easily extended for a N-surface solid

tubular shield with N > 2.
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b. Casey's circuit (Ref. 7)

When (a) the skin depths of the shields are much greater than

their thickness (6 >> A, thin shields), (b) the linear cross-sectional

dimensions of the double shield are much less than the wavelength of the

EMP disturbance (hb = V-P Z I' b - 1), and (c) there is no bonding strap,
1s1

then, Z' and 0T can be calculated from the circuit of Figure 16 or from

Equation 42. The circuit elements in the figure and the equation are

given in Equations 37, 38, 39,and 41.

When the shields are not thin, the circuit of Figure 17 (called

the generalized Casey's circuit) can be used to replace that of Figure 16

for calculating ZT and Q T* Equation 42 is still applicable, except that

the circuit element Z', originally given by Equation 41, becomes

S= Z' z'

Z 1  al Zb2 +  cl

Here, Z' and Z' are defined in a broader sense than Equation 28 to includeal b2
all kinds of penetrations. Both circuits in Figures 16 and 17 can also

be easily extended to describe a N-surface shield with N > 2.

c. General circuit

When there are periodic bondings connecting the shields, Z and

2T (the average values of ZT and Q T over the period of the bondings) can

be calculated from the circuit in Figure 26 or from Equation 55 (or

equivalently, Equation 52). The constant q (qYd/d may be named the

effective shunt admittance per unit length of the bondings) in Equation 55

and Figure 26 is a complicated function of the shield and bonding para-

meters (Eqs. 56 through 58). However, when the conditions given in

Equations 53 and 54 are met, q is approximately equal to 1, i.e.,

Equation 55 reduces to Equation 43. The truth of this statement is

further supported by the curves in Figures 27 and 28 for q and the

curves in Figures 18 through 25 for the normalized Z and 12 T (normalized

to their corresponding values for no bonding strap, i.e., Equation 55

with q -0). Actually, in Figures 18 through 25, the curves of Equation 43
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agree with those based on the exact Equation 55 even in the region where

hd < qs (i.e., the condition hd >> qs in Equation 53 is violated, and q

is quite different from one as shown in Figures 27 and 28), provided hd

is not close to niT. One thus concludes that when qs 0.1, Ihd -

V-Y'Z' d <<l and hd is not close to nw (n=1,2, . . .) Equation 43

or the circuit in Figure 26 with q = I is a good approximation for

calculating Z and QT"

From the results presented, one concludes that in order to shield

against the distributed excitations more effectively, the periodic

bondings should be implemented in such a way that Z IYd is large and

wd/c < n for the important parts of the EMP spectrum.

d. Examples

Consider a coaxial double shield (Fig. 2) with outer radius

b = 5 cm, inner radius a = 3 cm and with highly conducting bonding straps

of radius t = 1 mm. Also, take the practical values qy = Y' /Y' = 0.004
cl/ Tl

and q= Z'1/Z' 0.01. Then,

Z' Y 6.7 (m
- 1

clyd)

from which

, i d 2 for d=O.3m

clyd 1 for d=0.15m

From Figures 20 and 21, one immediately sees that the normalized transfer

functions are less than 0.1 (i.e., the bonding straps reduce the EMP

penetration by more than 20 dB) for

470 MHz when d 0.3 m
frequencies <

940 MHz when d- 0.15m

Both 470 MHz and 940 MHz are extremely high to be important.
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However, if the bonding straps between the coaxial double shield give

a much smaller Z'lYd value, say,

-d

Z'lYd = 0.67 m

then, when d = 0.15 m is used the same quality in the shielding effective-
ness as that of Z' Y 6.7 m and d = 0.15 m can be obtained only for

clyd
frequencies up to at most 300 MHz (see Fig. 18). Thus, bonding straps

with greater Z'lYd are preferred.
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I. INTRODUCTION

One of the most effective methods of protecting system from undesirable

EMP effects is by use of shielding. Although the basiz principles of

shielding for a single-surface enclosure are well understood (Ref. 1), the

extension of these principles to multisurface enclosures is by no means

straightforward. Unique to multisurface shielding is the mutual interaction

among the shields, which may degrade the intended shielding performance of

the enclosure. Another unique feature is the bonding that is often employed

between the shields in order to reduce electrostatic hazards. This bonding

practice may have an adverse effect on the protection of a shielded enclosure

against magnetic-field penetration. The effects of shield-shield interaction

and bonding will be treated in this report.

Figure 1 shows various topics that will be addressed in this report.

In Section II, the problem of two concentric spherical shields will be solved

using the theory of inductive shielding (Ref.l), and the results will be

generalized to N-surface spherical shields. The corresponding results for

cylindrical shields will be presented in Section III. Equivalent circuits

will be constructed in Section IV to interpret the analytical results for

a two-surface spherical enclosure; the results will be generalized to two-

surface enclosures of arbitrary shape. In Section VI the effect of bonding

on magnetic-field penetration into a two-surface enclosure will be discussed.

Finally, the most important results are summarized in Section VII.

The underlying assumptions of inductive shielding are (1) the electric

j field is neglected everywhere except in the enclosure's wall where it is

related to the induced current by Ohm's law, and (2) the wall thickness

is much smaller than the typical linear dimension of the enclosure. In

addition, this report assumes the wall thickness to be smaller than the

wall's skin depth, except in Section V where this assumption is removed.
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II. SPHERICAL SHIELDS

In this section, the problem of two concentric spherical shells will

first be treated with explicit simple engineering results given in frequency

and time domains. The results for two shells will then be generalized to N

concentric spherical shells. Discussions of equivalent circuits, generalization

to shields of arbitrary shape, and effects of electrical bonding between the

shells will be relegated to later sections.

1. TWO SPHERICAL SHIELDS

Figures 2a and 2b show an enclosure with two concentric spherical shields

immersed in a slowly varying magnetic field H (t). Insofar as the penetrant

field H i(t) is concerned, one may replace Figure 2a with Figure 2b with

appropriate boundary conditions that duplicate the shielding properties of

the walls (Ref. 1). The magnetic scalar potential 0 for the three regions shown

in Figure 2b takes the form

3aI

P1 = - Hor cos + A- cose r >a 1r

3E. aI
4*, - Brcos6 + C - cose a > r > a2

r

3 Dr cosO r a 2 ()

where H is the Laplace transform of H (t). The constants A, B, C and D are
0 0

determined by the following boundary conditions (Ref. 1 and Appendix A):

'r 1 ar 2' at r-a 1

at r-a
r 2 ar 32 (2)
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27o ,  at r-a 1

2 0 1 a
(3 - s oA2 2  r 2o at r-a2  (3)

Equations 2 mean that the normal component of the magnetic field is continuous

across the shield, while Equations 3 state that its tangential component is

discontinuous by the amount of the current induced in the shield. From

Equations 1 through 3 one finds that

3 2 (4)
H (I+TIS)(l+T 2s) (a2 /a) 3T 2

with
1

31 = oalaiA1

1

T2 ) o a2°2L2 (5)

If no interaction between the shields is assumed, Equation ' becomes

__ 1 (6)

0i + T 1 s) (l+T 2 s)
no int

as one would expect, since Equation 6 is the product of the transfer function

-of each individual shield. Equations 4 and 6 are plotted in Figure 3.

The time-domain solution of Equation 4 is

H (t)T 2 21 ' 1 rc et/Tl -et/T)(71" 1 e 1 e 7 (7)H 0 A T I -  T 2) 2 + 4T I1T2 a3
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FI,

where

3
T1 ,2  2- T 2 (l -c 3L (8)

S1 
+ ' 2  (T 1i-T 2 ) + 4 -1 T2 a

and a - a2 /al, while the time-domain solution of Equation 6 is

Hi t) I (e-t/tl -t/T 2 ) (9)

H T -l T2
no int

Here, H is the impulse strength of the external fields, and for most
0

applications can be taken to be the time-integral of the magnetic field of

a typical high-altitude EMP (Ref. 1).

Equations 7 and 9 are plotted in Figure 4 where one may see that for the

case a2/a1 = 0.9, the neglect of shield-shield interaction amounts to 20%

underestimate of the penetrant field.

From the viewpoint of the EMP hardness designer the currents induced

in each enclosure's shield are important, since they are the only means to

prevent the external field from penetrating into the interior of the enclosure.

Let Il and i2, denote the induced sheet currents in first and second shields

of Figure 2. Then, from Equations I through 3 one obtains

~ 1 €2 _1 1I
4K 1 a 2 1 Ie (at r=a I)

3 TIs(l+ T2s) - 3T 1T 2 s(2

2 3 2 sinO (10)1" S) (l s(1+ T2 S) - a T 1 T2s2

~ 1 a 3 1 t r2
20 a2 ae a 2 36 (at ra 2)

(+ s)l+ 2
)  - 2 sine (11)

2 t1 S) (1+ T2 S) -1 T tj 2 s
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These expressions for the currents will give a clue to construct equivalent

circuits in Section IV.

2. N SPHERICAL SHIELDS

Let 2 , q(3) ... i. denote, respectively, the field that penetrates1 1 '

into a two-surface, three-surface, ... N-surface spherical enclosure.

For a two-surface enclosure Equation 4 gives

S(21 (l +rIs)(l+T 2s) a TlT2S

=1+ (T1 +T 2 )s + [1- (a 2 /a 1 ) 3 ]T 2 s2 (12)

For a three-surface shielded enclosure (Fig. 5a) one uses the same,

although more complicated, procedure for the two-surface enclosure and finds

q /R(3)= 1 + (TI +T +2 3 )s +[l - (a2 /al)
3 ] TIT 2s2+ [i- (a3/a2)3]2T 3S2

1- (a 3 /al1) 3]TT1rzs 2+ [-(a 2/a 1)3] [1_ (a31/a 2 ) 3] TlT 2T3 s2(3

The poles of H.(s) in the complex s-plane for two and three spherical
shields are given in Table 1. These poles will immediately enable one to

plot the frequency spectrum of the penetrant field, since they are the

"break points" in the log-log scale plot (Fig. 6). From the table it is

clear that as the second and/or the third shield get closer to the outer

shield, the pole corresponding to the outermost shield moves toward the jw-

axis away from its unperturbed value -1, while the pole corresponding to the

second (third) shield (the second (third) column of Table 1) moves away from

its unperturbed value -1/a (-1/a ) further away from the Jw-axis.

For an N-surface spherical enclosure (Fig. 5b) one can write down, on

a close examination of Equations 12 and 13,
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TABLE 1. s-PLANE POLES FOR TWO-SURFACE AND THREE-SURFACE SPHERICAL

ENCLOSURES. THE VALUES ARE FOR 9 = r s WITH

a = a 2/a = a3/a 2 AND T2/ T3/T 2 = I

Two Shields Three Shields

s I2 1 2 3

0.1 - 1.00 -10.01 - 1.00 -10.01 -100.11

0.2 - 1.00 - 5.05 - 1.00 - 5.04 - 25.25

0.3 - 0.99 - 3.46 - 0.99 - 3.43 - 11.55

0.4 - 0.96 - 2.77 - 0.96 - 2.67 - 6.96

0.5 - 0.91 - 2.52 - 0.90 - 2.29 - 5.10

0.6 - 0.83 - 2.57 - 0.79 - 2.13 - 4.49

0.7 - 0.73 - 2.96 - 0.66 - 2.17 - 4.72

0.8 - 0.65 - 3.96 - 0.53 - 2.56 - 6.03

0.9 - 0.57 - 7.22 - 0.42 - 4.10 - 10.81

100

022

0201 3
03

Figure 6. Frequency spectrum asymptotes and break points where wl,

W 2 ' W3 are given in Table i (M-1 1971, 92 = Is 2 1, etc.).
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= S + s 2 si + / - T.T. + ...3
i1>j i 1

. . i - (ai/a 3I T . (14)

where a = . As expected, q(N) has N poles lying on the negative real axis
0 1

of the s-plane.
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III. CYLINDRICAL SHIELDS

The procedure of solving the problem of a multisurface cylindrical shield

where the external magnetic field is perpendicular to the axis of the shield

follows exactly that of the spherical shield described in Section II. The

other polarization where the external magnetic field is parallel to the axis of

the shield is treated in Reference 2. From the geometry depicted in Figures

7a,d one can immediately write down

- A
D1  - HoP cosO + - cos p > b
1 o P -I

C

P = Bp coso + C coso b > p > b22 -1- -- (15)

03 = D coso p <b 2

Applying at p b1 and p - b2 the boundary conditions (Ref.l)

Tp1 ap 2 1

a 0 a '
a 2 ap 3 2

s 2 t 1 ap 11

V 2 (0a0 L-St D o b0(-6b

3 b 2  (16)

to Equations 15 one gets

, fHi(s)rI-(s) = 1 (17)

H (s) (l+st1 )(l+st 2)- (b2/b1)
2t1t2S

2

where
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1

i b

t 2  2  oob2 a 2A 2

Similarly, for a three-surface cylindrical shield (Fig. 7b) one has

0S s) l+(tl+t2+t3 )s + [l (b 2 /b 1 )2]tlt 2 S2+[- (b 3 /b 2 )2]t 2 t 3s2

+ 1- (b 3 /b 1 ) 2 ] t 3 tls
2 + [1 - (b,/b 1 )2][1 _ (b3 /b 2 )2] t It 2 t3 s3

(19)

and for an N-surface cylindrical shield (Fig. 7c) one has

Ao(S)/A(N)(s) = 1 + s I t i + N I - (bi/b) 2 ] tit +....

0 i=l i>j

+ N  N 2] 1) t.

i 1 1 - (bi/bi 1) t (20)

i.=l

where b . A comparison of Equations 17 through 20 with Equations 4, 5, 13,

and 14 reveals that the results for spherical shields obtained in the last

section can be directly used for cylindrical shields if one replaces

spherical shields cylindrical shields

(ai/a) 3 y (bi/b )2

Ti by t

Therefore, in the following two sections on equivalent-circuit representation

and effects of bonding,discussions will be restricted only to the case of

spherical shields.

Table 2 gives the s-plane poles for Hi for two and three cylindrical

shields, while Figure 8 shows the frequency spectrum asymptotes and break

points for A i o0.
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TABLE 2. s-PLANE POLES FOR TWO-SURFACE AND THREE-SURFACE CYLINDRICAL

SHIELDS. THE VALUES ARE FOR s - st 1 WITH b = b 2 /b 1 =

b3/b 2 AND t 2 /t 1 = t 3 /t 2 =

Two Shields Three Shields

Si 2 Si 23

0.1 - 1.00 -10.11 - 1.00 -10.10 -101.12

0.2 - 0.99 - 5.26 - 0.99 - 5.21 - 26.30

0.3 - 0.96 - 3.80 - 0.96 - 3.66 - 12.68

0.4 - 0.92 - 3.25 - 0.91 - 2.98 - 8.20

0.5 - 0.85 - 3.15 - 0.82 - :..67 - 6.51

0.6 - 0.77 - 3.40 - 0.71 - 2.60 - 6.13

0.7 - 0.69 - 4.07 - 0.59 - 2.30 - 6.74

0.8 - 0.62 - 5.63 - 0.49 - 3.47 8.85

0.9 - 0.55 -10.56 - 0.40 - 5.85 - 16.09

tt

b3

CiJ6)2 (03IFigure 8. Frequency spectrum asymptotes and break points given in Table 2.
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IV. EQUIVALENT CIRCUIT REPRESENTATION - GENERALIZATION

TO SHIELDS OF ARBITRARY SHAPE

The results obtained in the last two sections will be interpreted in

terms of equivalent circuits in this section. The advantages of equivalent

circuit representation of mathematical results are two-fold: (1) it is useful

for interpreting results and understanding physical mechanism involved, and

(2) it is a quick way to generalize the results for specific shapes of en-

closure to arbitrary shapes of enclosure.

To gain more familiarity with what follows one starts with one-surface

spherical shielded enclosure (Fig. 9a) whose low-frequency transfer function

is (Ref. 1)

His) l+s (21)

H (s)

with
1 aaA (22)

where W., a, a and A are defined in Figure 9a. Equation 21 can be represented

by either the equivalent circuit of Figure 9b or Figure 9c where

1 1
L --i a, R=- (23)

3 0 CA

The inductance L can be expressed in terms of the volume V and the surface S

of the enclosure as

L - P0V/S (24)

{which also applies directly to cylindrical as well as two-parallel-plate
enclosures (Ref.l). Equation 21 can thus be used as the transfer function

of a single-surface shielded enclosure of arbitrary shape if T is interpreted

as
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L (25)

with L given by Equation 24 and R by (aA)- 1 .

The extension of the equivalent circuit given in either Figure 9b or 9c

for a single-surface enclosure to a two-surface enclosure turns out to be a

nontrivial matter. In principle, one may start with the transfer function

given in Equation 4 and constructs an equivalent circuit for it using the

techniques known in circuit synthesis (Ref. 3). This approach, however, does

not easily lead to a circuit which represents the actual physical phenomenon

of the problem. To derive the desirable circuit one returns to the induced

currents in the shields given by Equations 10 and 11. The total induced

current in each shield is obtained by integrating Equations 10 and 11. Thus,

3 2

I 7 T s(l+T 2 s) a T T2 s

1 = Kld 3 = -311 a 3 2 (26)(1+ Tis)(l+ T s) -(a2/a )3TiT s 2

r * 2 s
7 K d = - 3H a 2 (27)

2 j (l+TlS)(l+- 2s) -2o23T 2s

To generalize Equations 26 and 27 to two-surface enclosures of arbitrary

shape one simply sets

LI L2

TI 1 3 t2 = M2 /(RR 2) (28)
1 ' R2  1

where the self-inductances L1 ,L2, the mutual inductance Mand the resistances

R1,R 2 are given by

Vo oV2 2 2L 1 Vs1 L 2 = $2 M2.T-1  , M =-LL2

(29)

R -~R 1 2
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Here, V1 and V2 are the volumes enclosed respectively by the surfaces SI and S2
of the first and second shield. Equations 26 and 27 can be written in the

general form

sL1(sL2 + R2 )-s 2 M2

1 (30)
2 (sLI+R 1 )(sL 2 +R 2 ) - s2M2  o

12 stR 21 (31)
(SLl+R I)(sL 2 +R2) _ s M

2

with

io 3 H a 1 (32)

It can be easily verified that the equivalent circuit shown in Figure 10 leads

to Equations 30 and 31.

It remains to show how I and I2 are related to the penetrant field H.

given by Equation 4, which can be expressed in the generalized form

1i 2 (33)
12

Ho (sL 1 
+ R1 )(sL2 

+ R2) - 22

From Equations 30 and 31 one gets

1 L - 1 2 (34)4-fl + 1221- I (SL + R )(sL, + R S 22

The scaling factor L2/M can be expressed in terms of the geometric parameters
of the two shields with Equations 29 and is given by

L2 S- (35)
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Hence, one has on comparing Equations 33 and 34

H i ( S 2  (36)i H I

which is to say, one can first calculate I1 and I2 from the equivalent circuit

of Figure 10 from which the penetrant field Hi is directly deduced from

Equation 36.

A final point should be made about the scaling factor in Equation

36. This factor comes about because the magnetic field H is proportional to

current density K rather than the total current I.

I
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V. TWO SPHERICAL SHIELDS OF ARBITRARY ELECTRICAL THICKNESS

In the previous sections the thickness of the shield's wall was assumed

to be electrically thin. This assumption holds true for low frequencies

and/or poorly conducting shields. In this section this assumption will be

removed and the shield's wall can be of arbitrary electrical thickness.

As in Equation 1 let the scalar potential P for the three regions shown

in Figure 2b take the form

3a
I1

7 =D - Hr cosa + A' - cose r > a
r
3

a
2 = B'rcos8 + C' - cosa a, L r > a2

r

D3 = D'r cos8 r < a2  (37)

Instead of the boundary conditions given by Equations 2 and 3, the boundary

conditions are now given by (Ref. 1)

a(D - ( at r=a
3r 2 1 31s(2 1

ar 1 = 2 (D+ 1) at r=a1  (38)

a 2
3r 0 + (D2) =a 2 (0 3-02 at r=a 2

3r 3 2 2S 3 2 ~ 2. - (0-2 =f g2V (3 +O 2) at rffa 2  (39)

where

-i P po, tanh(pi/2)

SoP--- tanh(P/2)

2 2 (40)
P," spi i~9
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and i-1,2. The constants A', B', C' and D' can be found by substituting

Equation 37 into Equations 38, 39 and 40, and are given in Appendix A. The

penetrant field H. is obtained from -Vc3 and given by

Ho (cosh p, + KlPlsinh pl) (cosh P2 + K 2P2sinh p2
)- (a2 /a1 )3KlPlK2P2sinh Pl

s inh P2

(41)

with

KI o , K2  o 32 2  (42)

Just like Equation 4 the combined transfer function of two shields is the

reciprocal of the product of the transfer functions of individual shields

minus an interaction term.

For electrically thin shield walls (i.e., p,p 2 " 1), Equation 41

reduces to Equation 4, as it should. On the other hand, if the shield's

walls are electrically thick (i.e., plP 2  1 1), then Equation 41 gives

H. -(pI+P 2 )
HK ) 4e (a/a)(43)

0 (1+K lPl)(l+K2P2 ) - (a2/al)3KlPlK2P2

in which one may drop the ones in comparison with Klp I and K2p2. However,

Equation 43 is preferable since it is similar in form to Equation 4 for the

case of an electrically thin shield.

Equation 43 is plotted in Figure 11 with and without the interaction

3term (a2/aI ) KpK It can be concluded that for a2/aI = 0.9 and W 2 >l00

(which corresponds to f > 16 kHz for T 1 Ims), the shield-shield inter-

action reduces the shielding effectiveness by at least a factor of 3 or 10 dB.
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VI. EFFECT OF BONDING

Although bonding is often employed between shields in engineering

practice to reduce electrostatic hazards, there is no quantitative information

on its possible effect on the shielding performance of a shielded enclosure

against the low-frequency magnetic-field penetration. This section is

devoted to calculating this effect for two electrically-thin spherical

shields.

Figure 12 shows various types of connection arrangements of bonding

straps between the two surfaces of a spherical enclosure. Later in this

section it will become clear that the bonding strap arrangements (a) through

(d) have no effect on the magnetic-field shielding performance of the

enclosure, while the arrangement (e) has a significant adverse effect.

Before proceeding it is appropriate to remark that the low-frequency electric

field within a conducting enclosure comes mainly from the eddy currents

in the enclosure's wall induced by the time rate of change of the external

magnetic field. It is this electric field that is affected by the bonding

straps in the inductive shielding approximation.

Return now to Figure 12e (which is redrawn in Figure 13) and calculate

the current induced in the bonding straps. Let the unprimed quantities

be the quantities in the absence of the bonding straps, and the primed

quantities the quantities due to the presence of the bonding straps. Then,

integrating the equation

V xE (44)

over the area enclosed and traced out counter clockwise by the loop BCDAB

of Figure 13, one gets

VBC C AD AD ABCDA ABCDA (45)

where V is the voltage drop and i is the magnetic flux. In deriving

Equation 45 the bonding straps have been assumed to be good conductors;

otherwise, a term for the voltage drop along AB and CD has to be added to

the left hand side of the equation.
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Let 1b = current in bonding strap, Lb = inductance of one bonding strap,

RBC or RDA = resistance between B,C of the outer shield, or D,A of the inner

shield. It is obvious from Equation 44 that

ib(RBC + RDA + 2sLb) - sTABCDA -VBC +VAD

M S ABCDA -s"OBCO + SiOADO

S(TOAB + TOCD )

-2s OAB  (46)

The second step of the right hand side follows from repeated applications of

Equation 44. It has been assumed for simplicity that the two bonding straps

are identical. Hence, the triangle OAB is equivalent to the triangle OCD.

Similarly, an application of Equation 44 to the area enclosed by the

loop BADCB going counter clockwise in Figure 13 gives Equation 46, as it

should.

Solving Equation 46 for Ib and using the expression in Appendix B for
T0AB one obtains

2sABOA B

Ib RBC + RDA + 2 sLb

F °  s(l +sT o)
-- 0 0________ (47)

R (1+sTb)(1+sT1)(l+sT 2)

where Rs=RBC+RDA, Tb -2Lb/Rs , T1 and T2 are given in Equation 8, F and TO

are given in Appendix B. It can be shown that for practical cases To is

small compared to the decay time constant T of the inner shield. Hence

for low frequencies one may use the approximation

Ib ST 2 (48)

/R (1 + sTb) (1 + sT ) (1+sT2 ) (48)
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with Vo a FHo / 2' where FH0 is identically equal to the external magnetic

flux linking the two triangles shown in Figure 13.

The magnitude of Equation 48 is plotted in Figure 14 against WT 2 with

TbPC2 as a parameter. The time histories of Ib and ib are shown in

Figures 15 and 16 for an impulsive external magnetic field H 6(t), whicho

is a valid representation of any pulsed external field whose pulse width is

less than the diffusion time through the shield's wall. The diffusion time

of a typical metallic enclosure is on the order of tens of microseconds. The

parameter Tb/T2 is roughly equal to the ratio of the inductance of the two

bonding straps to the inductance of the inner enclosure, the latter being

given by u o a2 /3; that is to say

Tb  2Lb  6Lbb- b _ Lb(49)
T2 L2  Voa2

where Lb can be estimated from the approximate formula

L = 2-- n(/r) (50)
b 2r

with L - length of one bonding strap, r - effective cross-sectional radius

of the strap. It can be seen from Equations 49 and 50 that Tb/T 2 is usually

less than unity. The smaller is this parameter the more current will be

induced in the bonding straps, as can be observed in Figures 14 through 16.

Of course, the more current there is in the bonding straps the more

penetration there is into the enclosure. Table 3 summarizes the peak

values for Ib(t) and ib(t) for various values of Tb/T2. In the table it

is assumed that a2/a1 - 0 .9, Rs M (oA)
- , and the two shields have the same

thickness, conductivity and permeability.

To get some rough estimate on the field due to the bonding strap

current Ib one may divide Ib by 2ra2. From Table 3 and for the case

T b /T- 0.01 the peak penetrant fields due to Ib are
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TABLE 3. PEAK VALUES FOR Ib AND

Tb/T 2  0.01 0.1 0.2 0.5 1 > 5
T2 Ib(peak) 

0.43

Ha 2 Sin 3.1 1.57 1.11 0.61 0.36 Tb

2i

r2Ib(peak) 3.7 T
370 37.0 19.0 7.4 3.7

Hoa2 sin o 0 Tb

H(1) 1pa 0sn

1 (peak) a - H sin

H.2 (pak 0-~s (51)
2

That part due to direct field penetration can be read off from Figure 4 for

a2/aI - 0.9 and is given by

H 0)(peak) 0L4= T--2HO

H() (peak) = 3--5- H (52)ni T2o

2

The total peak penetrant fields, Hi(peak) and Ai(peak), with bonding straps

are the sum of Equations 51 and 52. It can be seen that the bonding straps

will increase Hi(peak) by a factor of two and Ai(peak) by as much as an

order of magnitude.
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VII. CONCLUSIONS

It is found that the inductive interactions among the shields and the
presence of conducting straps bonding the shields reduce the effectiveness

of a multisurface shielded enclosure against the penetration of external
magnetic fields.

For a two-surface spherical shielded enclosure the important findings

can be summarized as follows. Let

Hi'p - peak interior (penetrant) field

Hi'p M peak time rate of change of Hi(t) = peak electromotance force

(emf) density

j I frequency spectrum of H i(t)

and let the ratio of radii of inner to outer shield -0.9.

1. Neglect of interaction of electrically thin shields underestimates

* Hi p by 20%

* ip by a factor of 4

* 'lii by one order of magnitude for f > 100 kHz and enclosures
with L/R time constant - 100 us.

2. Neglect of interaction of electrically thick shields under-estimates

* lii by a factor of 3 for f > 160 kHz and enclosures with L/R

time constant = 100 us.

3. Two bonding straps, each subtending a 22.50 angle at the center

and with inductance 2Lb - 0.01 L2 (L2 
= 0.2 PH for an enclosure

of one-meter diameter), increase

*Hi, p by a factor of 2

* H by one order of magnitude
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APPENDIX A
THE CONSTANTS

The constants A, B, C,and D that appear in Equation 1 are given by

3 2 3
A 0 s( ( 1 +a T 2) + 4- T ~ 2 (1 -a)A - -2 2 3

(1+ s) (1+ sT 2 ) - s TIT 2 a

1+ ST2

ST 2 3o(I+st I)( I +st 2) - s TT 2
at

-- 2 2 3
(1+sTl )( l +st 2 ) s 2lT2 a

SD =-H 1

2  1 2

where a a 2/a,, 1 = joal 1oAl/3, T 2 = oa2a2a2/3 .

The constants A', B', C, and D' that appear in Equation 37 are given by

A' = 2F KlP, p1 - ~4 )sinh P, cosh P2 + K 2P2 + 9K2 sinh P2] +

a)(K2  4 )sinh cosh P- I +2 sinh pJ(7 K2P 2 -9K2P 2 li K~

1 2P

B' -- F2 P2  (P 2 + 2 sinh P2

C' 0 - - \2' K - sinh p,
2F a 2 2 9K 2P 2

D' = - i o IF
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where

2 2
Pl 1 1~~ll P2 2 s2 22

K1 - 3uI, 1A K2 = 3u2A2

F cosh p1 + Klpi + 2 sinh p, cosh p2 +(K 2P2 + 2 sinh( p 9KI l)I[ P P K22P

Kp,)( K2P2 ) sinh p1sinh P2

Unless KI and K2 are much smaller than unity one may neglect terms involving

the reciprocal of Kip, and K2P2 and obtains for F the following accurate

expression

F (cosh p1 + KlPlsinh pl)(cosh P2 + K2p2sinh P2
) -

- (a2/a) 3KIlpK 2p2sinh p1sinh P2

-i
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APPENDIX B

CALCULATION OF 'OAB

The magnetic field at the equatorial plane (6 w/2) can be found from

Equation 1, namely,

-~ 3He =B + C a1 /r a2 < r < a1

D a2 >r

The magnetic flux OAB can then be calculated via (Fig. Bi)

o --- ho f f dS
OABal

2 aa3

- Do+ a B+ C --:rdodr

2

aai y)-](B+C 4)rdr

+ - al +2 B al2sin - 0

14+sT0  FIH

a r

32 2(1+st l )(1+st 2) -a s IT

where

F D + Ba a ssni

12 o

o ""2 [ 2-+ tan(,/2) (cos ° -1)/sin ° ]
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equatorial (:7r/2) plane

Figure BI. Geometry for calculating the flux * OAB'
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